EARNED VALUE

Measurement	Formulae	Description
Budget At Completion (BAC)	None	The original estimated (planned) Project Cost
Planned Value (PV)	PV=Planned \% complete X BAC	Indicates amount of work which "SHOULD have been completed" or "Authorized work for completion" as per plan at any point
Earned Value (EV)	EV= Actual \% complete X BAC	Actual work that is accomplished at any point
Actual Cost (AC)	AC= Cumulative money spent till date	The actual money spent at any point of time
Cost Variance (CV)	CV=EV-AC	The difference between how much was actually Earned and how much was actually spent
Schedule Variance (SV)	The difference between planned schedule Vs Actual Schedule	
Cost Performance Index (CPI)	CPI = EV / AC	Indicates the project performance for every \$ spent
Schedule Performance Index (SPI)	SPI = EV / PV	Indicate actual schedule progress of the against the planned schedule
Estimate At Completion (EAC)	a. EAC = BAC / Cumulative CPI b. EAC = AC + ETC	The revised project Budget for completion based on current performance indicators
Estimate To Complete (ETC)	ETC = EAC - AC	How much more (cost) would be needed to complete the project based on current performance indicators
Variance At Completion (VAC)	VAC = BAC - EAC	The difference between the budgeted cost and revised estimates based on current performance indicators
Percentage money spent	\% spent = AC/BAC*100	Project Performance required to be achieved in order to stay within the original budget using the remaining funds
To-Complete Performance Index (TCPI)	TCPI = (BAC-EV) / (BAC-AC)	Actual money spent till date expressed in \%
PV/BAC X 100	Corcentage of Project Completed	

PERT		
Measurement	Formulae	Description
3 Point Estimate	$(P+4 M+\mathbf{O}) / 6$	Weighted average method of estimation technique where $P=$ Pessimistic, $M=$ Most Likely O=Optimistic

ESTIMATES		
Measurement	Range	Description
Rough Order of Magnitude Estimate	$-\mathbf{- 2 5 \%}$ TO +75\%	Applicable and valid during initial phases of project when the work is not much understood and there are lot of unknowns about the project
Preliminary Estimate	$\mathbf{- 1 5 \%}$ TO +50\%	Estimates based on high level initial details of the project
Budgetive Estimate	$\mathbf{- 1 0 \%}$ TO +25\%	The estimates during planning stage of the project
Definitive Estimate	$\mathbf{- 5 \%}$ TO +10\%	The estimates during project and is used only if the work is well understood

TIME MANAGEMENT (Assumed that the ES of first project activity is considered as 1)		
Measurement	Formulae	Description
ES	EF of previous activity + 1	Early Start (ES) for an activity is the Early Finish (EF) of its predecessor activity + 1. If an activity has more than one predecessor, then the highest EF to be considered to derive the ES
EF	EF = ES + Duration - 1	Early Finish (EF) can be derived by adding ES + Activity duration
LS	LS = ES + Float	Late Start (LS) is the Early Start + Float (if any)
LF	LF = LS+Dur-1	Late Finish is the Late Start + Activity Duration - 1
Float or Slack	FLOAT = LS-ES or LF-EF	maximum of time an activity can slip without affecting the end date of the project
Free Float	Duration = EF - ES or LF - LS	Duration is the difference between the activity start and end dates. early start date of its subsequent activities
Activity Duration	The total time a project can be delayed without delaying the project end date	
Total Float	A successor activity can only begin by the amount of lead time of its predecessor activity. Allows Lead	"Acceleration" of successor activity

PMP Exam Formulae to Remember

Lag	The amount of time an successor activity will wait after the completion of its successor before it can begin. "Delays" the Successor Activity
Critical Path	The Longest path in a network diagram and is also the minimum amount of time needed for the completion of the project. Also it shows the minimum amount of time required to complete the project.

PROJECT SELECTION

Measurement	Formulae	Description
Present Value (PV)	$\mathbf{P V = F V / (1 + r) ^ { \mathbf { n } }}$	Present Value of an investment expressed in \$ value
Net Present Value (NPV)	NPV = (Total Inflows - Investment).	Net present value of cash inflows generated over a period of time (including value of salvages...) less the initial investments of the project. i.e (cash inflows from investment) - (cash outflows or cost of investment). Project with higher NPV is better and preferred.
ROI	Choose the project with high Return of Investment (ROI)	
IRR	Monetary Yield of a Project expressed as an Rate (Returns). Choose the project with high Internal Rate of Return (IRR)	
Payback Period	The time taken for project to start yielding profit. Projects with shorter payback periods should be chosen.	
Benefits Cost Ratio (BCR)	A project with higher BCR is chosen. Cos > 1 means higher Benefits compared to Costs. BCR < 1 means lower Benefits compared to	
Cost Benefit Ratio (CBR)	A project with lesser CBR is chosen. CBR > 1 means higher Costs compared to Benefits. CBR < 1 means lower costs compared to Benefits	
Opportunity Cost	The value of the project not chosen	

COMMUNICATIONS		
Measurement	Formulae	Description
Communications Channels	$\mathbf{n X (n - 1) / \mathbf { 2 }}$	Number of communication channels increases as the number of members of the teams. Complexity of managing communications increases as the team increases.

PROBABILITY		
Measurement	Formulae	Description
Communications Channels	$\mathbf{n X (n - 1) / \mathbf { 2 }}$	Number of communication channels increases as the number of members of the teams. Complexity of managing communications increases as the team increases.

PROCUREMENT

Measurement	Formulae	Description
Point of Total Assumption (PTA)	PTA $=(($ (Ceiling Price - Target Price) / Buyer's Share Ratio) + Target Cost	Point of Total Assumption is a price determined by a fixed price plus incentive fee contract (FPIF) above which the seller bears all the loss of a cost overrun

Sigma

Measurement \quad Description

Sigma	Percent Defective	Defects per Million
1	69%	691,462
2	31%	308,538
3	6.7%	66,807
4	0.62%	6,210
5	0.023%	233
6	0.00034%	3.4

The sigma scale is a universal measure of how well a critical characteristic performs compared to its requirements. The higher the sigma score, the more capable the characteristic

